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Overview

� This session will present methodologies for Reliable 
Design implementation

� Topics that will be covered:
— General Design Theory

� Synchronous Design Theory
� Reliable Reset Circuitry

— Design Theory with Respect to Single Event Upsets 
(SEUs)

� Impact of SEUs on Synchronous Design
� Design Necessities for the Space Environment
� State Machine Theory
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Introduction

� Design complexity is ever increasing
� Design Methodologies and Process Definitions need 

to be developed and followed
� The space environment adds complicated 

parameters to the design process.
� There are many key components necessary to 

compose a reliable design…
— Topics chosen in this session seem to plague 

designers the most.
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FPGA Design

� FPGA Design is HARDWARE Design
� The job of the designer is to describe the circuitry via

— schematics (outdated approach) or 
— some form of HDL (Hardware Description Language).

� Misperception that HDL is similar to writing software
— The electrical characteristics of the circuit are generally 

overlooked and designs are improperly implemented
— Multilayered design process is generally not followed 

correctly
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FPGA Design

FPGA Design is a multilayered process
Designers should be familiar with
� HDL (i.e. VHDL or Verilog)
� Reading/creating Schematics
� Synthesis Tools
� Simulation Tools
� Difference in Technology Libraries
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Key Ingredients for Successful and Reliable 
Designs

� VHDL – looks like software… but know your technology!!!!
� VHDL RTL must functionally match gate level (post synthesis) for

simulation purposes.  This requires enforcing strict coding rules… 
and… Design for Verification

� Designer must be familiar with the synthesis tools and their 
interpretation of VHDL code

— Combinatorial circuits vs. Sequential
— Clock structures and potential skew
— Proper State machine implementation
— Arithmetic circuitry
— Clock domain crossings
— Reset logic
— When to use specific Synthesis directives
— Speed
— Etc…
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What is the Importance of VHDL Coding 
Styles.

� No Synthesis tool can be as efficient as proper Coding Style
� ASICS and FPGAs will be smaller and faster.
� Proper VHDL Coding Style is easier to verify
� We would like to shorten the Design Cycle…  Coding Style 

will affect
— Quality of Synthesis: drive the tool to better results
— FPGA mapping or design: can take advantage of the 

technology
— Place and Route: designs that are well thought out will 

have a clean route
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Coding Style Specifics - Think “Hardware”

� Architect with comprehension of your target’s features (ASIC 
and FPGA)

� Separate Combinational and Registered blocks
� Watch out for inferred latches
� Pay attention to large fan-out nets
� Consider how you code state machines
� Be careful with designing long paths of logic
� Be aware of when you are able to use Resource sharing
� Consider Simultaneous Switching Outputs
� Stick to well established Synchronous Design 

Techniques
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Design for Signal Integrity

� Simultaneously Switching Outputs can cause ground bounce 
(injection of noise into the ground plane)

� Identify potential SSO and spread them around the 
package.

� Avoid placement of asynchronous pins (resets, enables, etc.) 
near SSOs

� Place SSOs away from clock pins/traces
� When possible, use low slew outputs
� Strategically implement coding schemes that increase output 

integrety: i.e. Grey Scale … careful … 
— output of Grey circuit is glitchy (layers of combinatorial logic) 

and must be registered
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Design for Signal Integrity (Cont)

� Register all outputs – this is not a recommendation – it is a 
general rule.

� Register all inputs before usage within circuit (asynchronous 
or synchronous)

� Increased capacitive load decreases the amplitude of the 
ground bounce by reducing the output slew rate.  However, 
it will slow down transfer.

� Stagger the SSOs by using buffers within the FPGA so that 
they do not switch at the same time (if I/O protocol allows –
due to speed)

� Check the FPGA’s data sheet for the “safe” number of 
adjacent   SSO pins for the specified design
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Synchronous Design

� Why go through the trouble?

— The design becomes deterministic due to all critical logic paths
adhering to discrete time intervals (clock period).  

— Design Tools (Simulators, PAR, Synthesis, etc…) are easier to create.

— A deterministic design reduces the complexity of the verification 
effort. 
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Synchronous Design
� A synchronous design adheres to the following 

definitions:
— Number of clock regions should be minimized.  All DFF’s that 

have their clock pin connected to the same clock tree (that has 
minimal clock skew) are considered synchronous.

— Clock gating should be avoided as much as possible (trade offs 
for power may have to override this requirement)

— Asynchronous circuitry must use proper and deterministic 
techniques for passing data between clock domains

� A synchronous design consists of two types of logic 
elements:  

— Sequential : only accepts data at clock edge
— Combinatorial : will reflect function (after delay) whenever its 

inputs change state.
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Synchronous Design (Cont)

� Basically – a synchronous design suggests that 
— Every data path on the same low skew clock domain produces 

strictly deterministic timing analysis points
— All data paths that communicate via different clock domains 

must contain the following characteristics:
� Target domain synchronizes incoming data via a metastability 

filter, FIFO, or another well defined synchronization scheme
� Source must hold data long enough for the target domain to 

synchronize

� Synchronization does not guarantee exact cycle that data 
will be available – it only guarantees that the correct data 
will be available within a defined range of clock cycles
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Synchronous Design: Clock

� The clock is the heartbeat of every synchronous 
design

� It creates discrete and deterministic intervals
� It’s capacitive loading must be balanced (no skew)
� Must not enter the data path (only connect to the 

“clock” pin of a DFF)
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CLOCK - Input to 
FPGA/ASIC

N
 n

s 
Pe

rio
d

Frequency = 1/N

In a synchronous Design, The Clock 
Period will control 
• Amount of logic necessary to 

implement specified design
• Communication Schemes
• Architectural Decisions
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Q

QSET

CLR

D

Clock signal

Data Input Signal

Data Output Signal

Reset Signal

D Flip-Flop : Sequential 
Element 

Heart of Synchronous Design

A DFF is clocked (sequential) logic where 
data is stored and reflected on the output at 
either the rising or the falling edge of a clock 
(following a clock to q delay ).
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Setup and Hold Time for DFF

Tsu

ThData Launch

Data must be stable during between Tsu and Th
Relative to the associated clock

clock
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Capturing Correct Data

D a ta 1 D a ta 2 D a ta 3

P o s it iv e  E d g e  C lo c k
T ra n s it io n  -  D a ta  C a n  n o t

C h a n g e

D a ta 1 D a ta 2 D a ta 3

U n p r e d ic ta b le  re s u lts
a t  o u tp u t  o f  D F F

C L O C K  In p u t

D a ta  In p u t

D a ta  In p u t

C L O C K  In p u t
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Data Changing Near Clock Edge

� Unpredictable Results:
— May catch new data … but … may not capture it
— Can cause a DFF to glitch or oscillate – metastability
— Can cause a chain reaction of unpredictable results 

(state machine transitioning)
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Common Knowledge

� This is all common knowledge and yet designers 
make the following common mistakes

— Feed Asynchronous signals to state machines (and 
other DFF controlled logic)

— Use multiple clock domains without synchronized 
filters (metastability filters or FIFOs)

— Incorrectly define asynchronous domains as 
synchronous.
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Metastability

� Problem: Introducing an asynchronous signal into a 
synchronous (edge triggered) system... Or creating a 
combinatorial logic path that does not meet timing 
constraints

� Output Hovers at a voltage level between high and low, 
causing the output transition to be delayed beyond the 
specified clk to q (CQ) delay.

� Probability that the DFF enters a metastable state and the 
time required to return to a stable state varies on the process 
technology and on ambient conditions.

� Generally the DFF quickly returns to a stable state.
However, the resultant stable state is not deterministic
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Metastability Equation

Ec2*tmet

F0*Fd*C1
MTBF = F0: Clock Frequency

Fd: incoming data frequency
C1: related to the window of susceptibility
C2: device specific constant
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Metastability Filter
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Clock Skew

� Skew: it is the measurement of the difference in clock 
arrival time seen at one DFF compared to another DFF 

� Can cause a synchronous design to become asynchronous 
due to set-up and hold violations

� Clock tree must be balanced to avoid skew – beware of tree 
connections – should only be to a DFF clock pin (I.e. can not 
feed combinatorial logic).

� Designs that feed a clock that is not on a clock tree to DFFs
will most likely contain unpredictable behavior.

— Design Dependent 
— Very small number of DFFs (with combinatorial logic between 

them can get away with no clock tree)
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Clock seen at DFF 1

Clock seen at DFF 2

33 MHz

Q

QSET

CLR

D

Q

QSET

CLR

D
DFF1 DFF2

Clock 
buffer

Unbalanced clock tree

Clock 
buffer

� Connections at leaves of tree 
must only be inputs to DFF 
clock pins … i.e. can not 
connect to an “and” gate -
creates unbalanced tree .

� Connection routes must also 
be the same length
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Q

QSET

CLR

D

Clock
Q

QSET

CLR

D

SKEW

CQ Delay

Routing Delay

Clock seen at 1st

DFF

Clock seen at 2nd

DFF

SKEW < CQ+ROUTE DELAY + DFF_su

Bad Data : Seen 
at 2nd DFF

DFF_su 
(setup time)

Skew was too large : 2nd DFF 
captures the same data as 1st

DFF

Clock Skew – Can cause Metastability and Unpredictability
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Solution to Clock Skew Problem

� Use Clock trees with low skew distribution to the 
DFF’s

� If not good enough… place a buffer (or some sort 
of delay ) between the two DFF’s

� Beware, clock trees contain points that are relative 
to each other (i.e. every point does not contain the 
same relative skew).
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Static Timing Analysis

� Concept: When will Data arrive at its associated DFF 
relative to the clock

� Every data path delay contained solely within each 
clock domain must be strictly deterministic

� Each path is defined as:
— Input to DFF
— DFF to DFF
— Input to Output (highly not recommended design 

practice – inputs should pass through a DFF)
— DFF to output
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Synchronous Clock Analysis –

Delays created by routing or buffer logicDelays created by routing or buffer logic

D   Q

D   Q

Output Delay

Output Delay

Skew

Data Delay

Clock Delay

Data Delay

Clock

Data1

Data2
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Synchronous Timing Analysis

Q
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CLR

D
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QSET

CLR

D

1 Clock Cycle

Clock

DFF to DFF Boundary with 
Combinatorial Logic

G
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1 ns

2.5 ns

1 ns

2 ns
3 ns

1.5 ns

1.5 ns

5.5 ns

7.5 ns

∠ Longest Path: 14 ns - Clock must have a period longer than 14 ns + overhead 
(temperature, voltage, and process variation)

∠ Shortest Path : 10ns
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Static Timing Analysis

� Delay of Data from its launch to its capture relative to the 
associated clock is calculated

� Data must be supplied with enough margin relative to the clock 
such that it will arrive at the DFF without violating DFF set-up 
and hold time.

� Best Case: Data source is derived from the same clock domain 
� General Case (Inputs and multiple clock domain crossings): Data 

source must have relative (known) timing characteristics to the 
capture clock source.  Otherwise, Data must be synchronized to 
the capturing domain
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Reset Circuitry

� Within a reliable synchronous design, carefully thought-out 
reset circuitry is crucial. 

� However, very often reset circuits are over-looked and the 
appropriate planning does not occur. 

� Improper use of asynchronous resets has led to metastable 
(or unpredictable) states. 
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Asynchronous Resets 

� Designers will lean towards using an asynchronous 
reset within systems for several reasons.  

— Depending on the functionality of the FPGA/ASIC 
immediate response to a reset may be necessary.

— FPGA/ASIC must respond to a reset pulse even 
during loss of a clock signal.

— During Power Up/Down, the FPGA/ASIC outputs 
must be in a particular state in order to not damage 
other board components.
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Asynchronous Resets

� No problems exist as the system goes into reset due 
to the fact that all Flip Flops will eventually enter 
their reset state (i.e. a deterministic state space is 
reachable).  

� The predicament occurs when the system comes 
out of the reset state.    

� If an asynchronous reset signal is released near a 
clock edge, it is possible for the flip flops to be 
become metastable, or come out of reset relative to 
different clock edges.  
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Asynchronous Resets

Release of Reset

Some Flip Flops may see the 
release at different clock edges

RESET

CLOCK

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

1 0 1

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

1 0 0

DFF comes out of RESET early 
compared to the first two DFFs

DFFs during RESET
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Asynchronous/Synchronous Resets

� Solution: Use Asynchronous Assert Synchronous De-assert Reset 
circuit

� Such a design uses typical metastability filter theory. Diagram is 
Active Low.

Q

QSET

CLR

D

Q

QSET

CLR

D

Metastability Filter 

1

Buffer

Flip Flops are 
able to 

asynchronously 
go into RESET

Flip Flops come out 
of RESET 

synchronously
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Asynchronous/Synchronous Resets

� Upon the release of the reset signal, the first 
Flip Flop is not guaranteed to correctly catch the release of 
the reset pulse upon the nearest clock edge 

� At most the next clock edge.  
� It is also probable that the first Flip Flop will go metastable.
� The second Flip Flop is used to isolate the rest of the 

circuitry from any metastable oscillations that can occur 
when the reset is released near a clock edge (setup/hold time 
violation).
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Asynchronous/Synchronous Resets

� Depending on the technology – ASIC vs. FPGA vs. 
Vendor, the designer may need to hand instantiate 
a high drive buffer.  

� The output of the high drive buffer must be 
connected to the asynchronous reset terminal of 
each DFF in the system.
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Asynchronous/Synchronous Resets
and Synthesis

� There is a possibility that the synthesis tool can 
duplicate the second Flip Flop due to its large fan-
out (not common in all technologies).  

� The designer should check that there has not been 
any replication.  

� The best approach is to have a library of modules 
(components) that includes a metastability filter.  
Within this module, place a do not replicate 
attribute on the second DFF to avoid incorrect 
realization. 
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Asynchronous/Synchronous Resets
Disadvantage

� The system is very sensitive to glitches on the input 
reset signal and transients.

� The board must contain a low pass filter within the 
reset path before it reaches the FPGA/ASIC.

� I/O (or internal) Transients/Upsets are difficult to 
fix.

— Additional filtering or mitigation (internal to FPGA) 
will always have at least one single point of failure 
and may not reduce the upset cross section.
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Synchronous Resets

� Purely synchronous resets are very popular within 
the commercial industry.  

� It is highly recommended to implement mixed 
asynchronous/synchronous reset circuitry for space 
applications

� However, if there are no sensitive components that 
the FPGA/ASIC is feeding, the synchronous 
approach is sufficient.
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Synchronous Resets

Q
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CLR

D
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Metastability Filter do not connect 
the RESET signal to the 

Asynchronous DFF Reset 
terminals

RESET

Buffer
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Synchronous Resets
Advantages

� The following are advantages of synchronous reset 
implementations: 

— The reset can predictably reach all of the DFF’s in 
the circuit during the same clock cycle (as long as no 
timing violations exist).    

— The reset can be partitioned per module by adding 
an extra 
DFF and thus reduce reset routing congestion. 

— Extensive reset debounce circuitry can be 
implemented (using counters)
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Synchronous Resets
Disadvantages

� Must Have a Clock present
� Can potentially damage parts on the board during 

power up/down
� Can become hard to manage if it gets entangled 

within the data path
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Reset Circuitry Summary

� Asynchronous Reset assert and Synchronous de-
assert is the most optimal implementation

� When using Asynchronous assert and Synchronous 
de-assert, de-bounce circuitry is necessary

� Use Synchronous Resets if partitioning (due to 
critical timing) is necessary

� Careful system level consideration must be 
performed
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Synchronous Design within an 
Asynchronous Radiation Environment

� Synchronous Design Theory depends on 
deterministic behavior

� Single Event Upsets (SEUs) and Single Event 
Transients (SET’s) are considered asynchronous 
events

� Metastability and non-determinism is inevitable. 
� Design for Hardness Methodologies have been 

developed to reduce the upset rate
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Three Common Mitigation Techniques

� Localized Triple Mode Redundancy (TMR)
� Distributed TMR
� Localized DICE
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Localized vs. Distributed Mitigation
Localized
� Mitigation occurs within one clock domain and at each 

DFF
� Data, clock, reset, and enable are shared inputs to the 

DFF

Fully Distributed
� The entire design is tripled (I/O, clock domains, and 

logic)
� Mitigation occurs at each DFF across clock domains
� No shared DFF input lines
� Area extensive
� Power hungry
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Localized TMR Example: One DFF Cell

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D
Voting 
Logic

Clock
Data

Glitch on Shared 
input will not get 

voted out

Important to create a 
glitch-free Voter
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Distributed TMR Example
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D
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D
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D
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Antifuse FPGA Devices

� Currently the most widely employed FPGA 
Devices within space applications

� Configuration is hardened due to fuse based 
technology

� Localized Mitigation (TMR or DICE) is employed
� Clock and Reset lines are hardened
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SEUs and The Antifuse FPGA Design 
Community

� Design strategies have been built off the sole fact that SEUs
are created from DFF radiation hits.

� Current Proposed Design Methodology:
— Use less DFFs
— Do not replicate DFF logic due to high fan-out
— Use binary (or Gray) encoding state machines vs. one-hot

� However, as frequency increases, SET 
generation and encapsulation actually 
dominate the error cross section.
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DFF Upsets

SEU Cross Section vs. Frequency

Frequency MHZ

σσ σσ s
eu

DFF Upsets due to Transients 

DFF Upsets due to SEUs 
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Basis of a Design Methodology

� No mitigation is 100%
� Objective is to reduce the probability of SEU 

generation
� Current Hardened FPGA devices suggest that DFF 

nodes should have a low SEU cross section – upsets 
mostly due to SET’s
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Design Methodology

The designer should:
� Reduce the amount of combinatorial logic or
� Strategically add redundant logic
� Use Hardened Clock trees for clock Distribution
� Use Hardened Clock trees for reset Distribution
� Simplify logic and use lower fan-out solutions (i.e. 

one-hot state machines vs. binary)
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Probability of Upset due to Capturing a SET

A

B

C

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Simplified Probability of Upset :
P(A) + P(B) + P(C) + P(DFF catching SET)
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Probability of Upset with Mitigation

A

B

C

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Simplified Probability of Upset :
P(mitigation) + P(DFF catching SET)

Mitigated ABC function
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Probability of Upset with Mitigation

� Although there is more combinatorial logic with 
mitigation insertion, the probability of upset is reduced

� Mitigation susceptibility:
— Glithy mitigation: can add to cross section
— Delay filtering: reduces functional cross section but 

has its own (overlap)
— Increase in mitigation complexity can increase 

susceptibility
— Sensitivity of last transistor in mitigation circuit 

(single point of failure – very low cross section)
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Mitigation and Your Synthesis Tool

� The objective of the synthesis tool is to reduce area
� The synthesis optimization algorithm will want to remove 

redundancy to reduce area
— Don’t touch directives may be necessary

� Designer must look at the schematic produced by the 
synthesis tool to verify that the mitigation has been correctly 
produced
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Glitches in TMR Circuitry: Example

TMR Circuit

Counter

A

B

C
OutSig E

32 bits

sysclk
Reset

For this example, C will be hit by
an SEU, the TMR logic should

stay stable.  However, poor
TMR circuitry was synthesized
and a glitch occurs on OutSig

If Outsig glitches near a
clock edge, unpredictable
results within the counter

occur
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Glitchy TMR Circuitry Continued TMR Reaches 
DFFs at Separate Times
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State Machine Example
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Synchronous State Machines

� A Finite State Machine (FSM) is designed to 
deterministically transition through a pattern of defined 
states

� A synchronous FSM utilizes flip-flops to hold its currents 
state, transitions according to a clock edge and only accepts 
inputs that have been synchronized to the same clock

� Generally FSMs are utilized as control mechanisms
� Concern/Challenge:  

— If an SEU occurs within a FSM, the entire system can lock up 
into an unreachable state: SEFI!!!
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Synchronous State Machines

� The structure consists of four major parts:
— Inputs
— Current State Register
— Next State Logic
— Output logic

C
urrent S

tate

O
utputs

Inputs

Clock

Next State
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Encoding Schemes

� Each state of a FSM 
must be mapped into 
some type of encoding 
(pattern of bits)

� Once the state is 
mapped, it is then 
considered a defined 
(legal) state

� Unmapped bit patterns 
are illegal states

IDLE

GetData

Process
Data

Send
Data

BadData

Start=0

Start=1

Exam ple:
Five states need to be m apped.

There is only one input: Start
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Encoding Schemes

1 1 0

S T A T E S  (5 ) :

ID L E :0 0 0
G E T _ D A T A :0 0 1
P R O C E S S _ D A T A :0 1 0
B A D _ D A T A :0 1 1
S E N D _ D A T A :1 0 0

1 0 0

R e g is te rs : b in a ry
e n c o d in g

G o o d  s ta te  :  S E N D _ D A T A

B a d  s ta te :  u n m a p p e d

1 0 0

0 0 0

R e g is te rs : O n e
H o t e n c o d in g

1

1

G o o d  s ta te  :  S E N D _ D A T A

B a d  s ta te :  u n m a p p e d

S T A T E S  (5 ) :

ID L E :0 0 0 0 1
G E T _ D A T A :0 0 0 1 0
P R O C E S S _ D A T A :0 0 1 0 0
B A D _ D A T A :0 1 0 0 0
S E N D _ D A T A :1 0 0 0 0

0

0
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Safe State Machines???
� A “Safe” State Machine has been defined as one that:

— Has a set of defined states
— Can deterministically jump to a defined state if an illegal state has 

been reached (due to a SEU).
� Synthesis tools offer a “Safe” option (demand from the Aerospace

industry):
TYPE states IS ( IDLE, GET_DATA, PROCESS_DATA, 

SEND_DATA, BAD_DATA );
SIGNAL current_state, next_state : states;
attribute SAFE_FSM: Boolean;
attribute SAFE_FSM of states: type is true;

� However…Designers Beware!!!!!!!
— Synthesis Tools Safe option is not deterministic if an SEU occurs near 

a clock edge!!!!!
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Binary Encoding: How Safe is the “Safe” 
Attribute?

� If a Binary encoded FSM flips into an illegal (unmapped) 
state, the safe option will return the FSM into a known state.  
However, this is most safely implemented by use of a error 
detection and FPGA reset.

� If a Binary encoded FSM flips into a good state, this error 
will go undetected.  

— If the FSM is controlling a critical output, this phenomena can 
be very detrimental!

— How safe is this?
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Safe State Machines???

1 1 0
S T A T E S  (5 ) :

ID L E :0 0 0
T U R N O N _ A :0 0 1
T U R N O F F _ A :0 1 0
T U R N O N _ B :0 1 1
T U R N O F F _ B :1 0 0

1 0 0

U s in g  th e  “ S a fe ”  a t t r ib u te  w il l  t ra n s it io n  th e  u s e r  to
a  s p e c if ie d  le g a l s ta te  u p o n  a n  S E U

G o o d  S ta te

Il le g a l S ta te :
u n m a p p e d

0 0 1

U s in g  th e  “ S a fe ”  a t tr ib u te  w il l  n o t  d e te c t  th e  S E U :
T h is  c o u ld  c a u s e  d e tr im e n ta l b e h a v io r

G o o d  S ta te :
T U R N O N _ A

0 1 1

le g a l S ta te :  T U R N O N _ B

S ta te (1 )  F lip s  u p o n  S E U :

012

012
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One-Hot vs. Binary

� Some suggest that Binary is “safer” than One-Hot
— Based on the idea that One-Hot requires more DFFs to 

implement a FSM thus has a higher probability of incurring an 
error

� This theory does not apply to Antifuse hardened FPGA’s 
working at high frequencies (> 10 MHZ)

— Most of the community now understands that although One-
Hot requires more registers, it has the built-in detection that is 
necessary for safe design

— Binary encoding can lead to a very “un-safe” design
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Proposed SEU Error Detection: One-Hot

� One-Hot requires only one bit be active high per clock period
� If more than one bit is turned on, then an error will be 

detected.
� Combinational XNOR over the FSM bits is sufficient for 

SEU detection
� Error Detection can be used to deal with the upset (i.e. reset 

FPGA)
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Summary

� Synchronous Design Techniques should be followed to 
create reliable designs

� Think ahead – overall system consideration
� Understand the targeted technology - mitigation, 

hardened routes, areas of SEU susceptibility.
� Add extra mitigation where necessary (control the 

synthesis tool while doing so)
� Use hardened Clock networks for the low skew clock 

tree and resets


